
Kingsley E. Nwagu
Department of Biotechnology, Alex Ekwueme Federal University Ndufu Alike, Abakaliki, Ebonyi State Nigeria
Adaugo G. Ibeh
Department of Biotechnology, Alex Ekwueme Federal University Ndufu Alike, Abakaliki, Ebonyi State Nigeria
Fredrick O. Okpaga
Department of Biotechnology, Alex Ekwueme Federal University Ndufu Alike, Abakaliki, Ebonyi State Nigeria
Mercy Nwaobia
Department of Biotechnology, Alex Ekwueme Federal University Ndufu Alike, Abakaliki, Ebonyi State Nigeria
Evelyn N. Enwere
Department of Biotechnology, Alex Ekwueme Federal University Ndufu Alike, Abakaliki, Ebonyi State Nigeria
Chidozie D. Udechukwu
Department of Biotechnology, Alex Ekwueme Federal University Ndufu Alike, Abakaliki, Ebonyi State Nigeria
DOI: https://doi.org/10.14456/apst.2025.31
Keywords: Bio-recycling Economic viability Environmental impact Plastic pollution Wax worm
Abstract
Plastic pollution has become a pressing global challenge, with the widespread accumulation of plastic waste in landfills, oceans, and ecosystems. Conventional plastic recycling methods face limitations and challenges, including sorting difficulties, contamination issues, and down-cycling of plastic materials. In response, the concept of bio-recycling, which involves the use of biological agents to break down plastic materials, has emerged as a potential solution. Wax worm bio-recycling offers significant environmental benefits by reducing plastic waste and minimizing pollution. It has the potential to divert plastic waste from landfills and incineration facilities, thereby reducing the environmental burden associated with plastic disposal. By breaking down plastic materials into biodegradable fragments, wax worm bio-recycling helps mitigate plastic pollution in landfills, oceans, and ecosystems. Furthermore, it aligns with the principles of a circular economy, promoting the effective recycling and reuse of plastics. The economic viability and market opportunities for wax worm bio-recycling technologies are promising. Ongoing research focuses on optimizing enzyme performance, improving scalability, and developing industrial applications. Cost-effectiveness, sustainability, and regulatory aspects are crucial considerations for large-scale production and application of wax worm oxidative enzymes. Public perception and awareness play a vital role in the adoption of this innovative approach, emphasizing the need for collaboration among stakeholders, including scientists, policymakers, and the general public.
How to Cite
Nwagu, K. E. ., Ibeh, A. G. ., Okpaga, F. O. ., Nwaobia, M., Enwere, E. N. ., & Udechukwu, C. D. . (2025). Wax worm (Galleria mellonella) oxidative enzymes as a tool for plastics bio-recyling: A review. Asia-Pacific Journal of Science and Technology, 30(02), APST–30. https://doi.org/10.14456/apst.2025.31
References
Nwagu KE, Ekpo IA, Ekaluo BU, Ubi GM, Elemba MO, Uzoh CV. Optimization and molecularcharacterization of exoelectrogenic isolates for enhanced microbial fuel cell performance. Microbiol Biotechnol Lett. 2019;47(4):621-629.
Jambeck JR, Geyer R, Wilcox C, Siegler TR, Perryman M, Andrady A, Law KL. Plastic waste inputs from land into the ocean. Science. 2015;347(6223):768-771.
Bergmann M, Collard F, Fabres J, Gabrielsen GW, Provencher JF, Rochman CF, Sebille EV, Tekman MB. Plastic pollution in the Arctic. Nat Rev Earth Environ. 2022; 3:323-327.
Bombelli P, Mustin C, Combe M, Valsami-Jones E. Designing solutions for plastic pollution using Galleria mellonella. Trends Biotechnol. 2020;38(6):573-81.
Geyer R, Jambeck JR, Law KL. The global disposition of marine debris. In: Marine Anthropogenic Litter. 2018. p. 29-56.
Rochman CM, Hoh E, Kurobe T, Teh SJ. Ingested plastic transfers hazardous chemicals to fish and induces hepatic stress. Sci Rep. 2013;3(1):1-6.
Wright SL, Thompson RC, Galloway TS. The physical impacts of microplastics on marine organisms: a review. Environ Pollut. 2013; 178:483-492.
Sivan A. New perspectives in plastic biodegradation. Curr Opin Biotechnol. 2011;22(3):422-426.
Wagner M, Scherer C, Alvarez-Muñoz D, Brennholt N, Bourrain X, Buchinger S, et al. Microplastics in freshwater ecosystems: what we know and what we need to know. Environ Sci Eur. 2014;26(1):1-9.
Hu D, Liu H, Cai Y. Strategies for plastic waste management: a review. J Clean Prod. 2021; 315:128268.
Muthu SS, Li Y, Hu J. Handbook of recycled concrete and demolition waste. Vol. 69. Woodhead Publishing; 2016.
Rujnić-Sokele M, Pilipović A. Biodegradation of synthetic polyesters: a review. Int Biodeterior Biodegrad. 2012; 75:100-118.
Barnes DK, Galgani F, Thompson RC, Barlaz M. Accumulation and fragmentation of plastic debris in global environments. Philos Trans R Soc Lond B Biol Sci. 2009;364(1526):1985-98.
Jin X, Zeng L, Luo Y. Microplastics and nanoplastics in the environment: toxicity, environmental transport and degradation. Environ Pollut. 2018; 234:535-545.
Wei R, Zimmermann W. Microbial enzymes for the recycling of recalcitrant petroleum-based plastics: how far are we? Microb Biotechnol. 2017;10(6):1308-1322.
Brandon AM, Gao H, Tian M, Ning D, Yang S. Plastic waste biodegradation by bacterial strains and Galleria mellonella as a model organism. Environ Sci Technol. 2018;52(17):10008-10016.
Yang Y, Yang J, Wu WM, Zhao J, Song Y, Gao L. Biodegradation and mineralization of polystyrene by plastic-eating mealworms: Part 1. Chemical and physical characterization and isotopic tests. Environ Sci Technol. 2014;48(20):12080-12086.
Luo J, Qin H, He Y, Gao S, Zhang C. Bio-recycling of plastics: an overview. Front Microbiol. 2020; 11:428.
Araújo R, Santos MS, Guedes AP, Lopes I, Freitas AC, Carvalho G, Otero M. Enzymatic degradation ofplastics: a systematic review. Environ Sci Pollut Res Int. 2020;27(13):14121-14131.
Narancic T, O’Connor KE, Prieto A. Microbial biodegradation of plastic. WIREs Nanomed Nanobiotechnol.2020;12(3): e1623.
Ragaert K, Delva L, Geem KV. Mechanical and chemical recycling of solid plastic waste. Waste Manag.2017;69:24-58.
PlasticsEurope. Plastics – the facts 2021. PlasticsEurope [Internet]. 2021 [cited 2024 Sep 11]. Available from: https://www.plasticseurope.org/en/resources/publications/4312-plastics-facts-2021.
Eastman. Eastman carbon renewal technology. Eastman [Internet]. 2021 [cited 2024 Sep 11]. Available from:https://www.eastman.com/Company/News_Center/2021/Pages/Eastman-Carbon-RenewalTechnology.aspx.
Ali SS, Elsamahy T, Zhu D, Sun J. Biodegradability of polyethylene by efficient bacteria from the guts of plastic-eating waxworms and investigation of its degradation mechanism. J Hazard Mater.2023;443(130287): 0304389422020817
Wikipedia Contributors. Waxworm [Internet]. 2024 [cited 2024 Feb 11]. Available from: https://en.wikipedia.org/w/index.php?title=Waxworm&oldid=1206188242.
Lebreton LC, van der Zwet J, Damsteeg JW, Slat B, Andrady A, Reisser J, et al. River plastic emissions to the world’s oceans. Nat Commun. 2017;8(1):1-10.
Yang Y, Yang J, Wu WM, Zhao J, Song Y, Gao L. Biodegradation and mineralization of polystyrene by plastic-eating mealworms: Part 2. Role of gut microorganisms. Environ Sci Technol. 2015;49(20):12087 12093.
Yang J, Yang Y, Wu WM, Zhao J, Jiang L. Evidence of polyethylene biodegradation by bacterial strains from the guts of plastic-eating waxworms. Environ Sci Technol. 2014; 48:13776-13784.
Gómez-García MR. Wax moth Galleria mellonella (Linnaeus, 1758): a potentially important insect for biodegradation and detoxification of industrial waste. Environ Sci Pollut Res Int. 2021;28(5):5627-5635.
Muhamad A, Donatella B. Observations of embryonic changes in middle and late stages of the Greater WaxMoth, Galleria mellonella (Lepidoptera: Pyralidae). Adv Entomol. 2018; 6:189-197.
Shapiro-Ilan DI, Cottrell TE, Mizell RF, Horton DL. Life history of the wax moth, Galleria mellonella (Lepidoptera: Pyralidae), in relation to control of the ectoparasitic mite, Varroa destructor (Acari: Varroidae). J Econ Entomol. 2006;99(3):740-746.
Ren L, Men L, Zhang Z, Guan F, Tian J, Wang B. Biodegradation of polyethylene by Enterobacter Sp. D1 from the guts of wax moth Galleria mellonella. Int J Environ Res Public Health. 2019; 16:1941.
Jiang S, Su T, Zhao J, Wang Z. Isolation, identification, and characterization of polystyrene-degrading bacteria from the gut of Galleria mellonella (Lepidoptera: Pyralidae) larvae. Front Bioeng Biotechnol. 2021; 9:736062.
Hu X, Liu Y, Wang S, Liu X, Li M, Shi X. Diversity and plastic-degrading potential of bacteria isolated from Galleria mellonella (Lepidoptera: Pyralidae) gut. Environ Pollut. 2020; 257:113524.
Bertocchini F, Corsi I, Forzan M, D’Angelo L, Anselmi C. Biodegradation of synthetic polymers in the gut of Trichoplusia ni larvae. Environ Sci Technol. 2012;46(16):8824-8831.
Lou Y. Bio-degradation of polyethylene and polystyrene by greater wax moth larvae (Galleria mellonella L.) and the effect of co-diet supplementation on the core gut microbiome. Environ Sci Technol. 2020; 54:2821-2831.
Sulaiman S, Yamato S, Kanaya E, Kim JJ, Koga Y, Takano K. Isolation of a novel cutinase homolog with polyethylene terephthalate-degrading activity from leaf-branch compost by using a metagenomic approach. Appl Environ Microbiol. 2014;80(13):1551-1557.
Yuan J, Li D, Chen X, Lin S, Zhang L, Zhou Q, et al. Biodegradation of polyethylene microplastics by the marine bacterium Pseudomonas aeruginosa. Front Microbiol. 2020; 11:580548.
Shah AA, Hasa F, Hameed A, Ahmed S. Biological degradation of plastics: a comprehensive review. Biotechnol Adv. 2008;26(3):246-265.
Wright SL, Rowe D, Thompson RC, Galloway TS. Microplastic ingestion decreases energy reserves in marine worms. Curr Biol. 2013;23(23):1031-1033.
Karanikolos N, Achilias DS, Bikiaris DN. Chemical recycling of plastics: status, challenges, and perspectives. Recycling. 2020;5(2):18.
Chen S, Zhang J, Chen J, Du G, Liu L. Microbial degradation of polyethylene, polypropylene, and polyvinyl chloride. In: Microbial degradation of polymeric materials. 2017. p. 1-32.
Chen S, Tong X, Woodard RW, Du G. Insights into the oxidative degradation mechanism of polyethylene by oxidative enzymes from the white rot fungus Phanerochaete chrysosporium. Environ Sci Technol. 2018;52(2):642-651.
Huang Y, Lin L, Xiong X, Wei D, Li Y, Yang J. Biodegradation of low-density polyethylene and polypropylene by Galleria mellonella larvae and their gut microbiota. Sci Total Environ. 2021; 768:144319.
Cassone BJ, Grove HC, Elebute O, Villanueva SM, LeMoine CM. Role of the intestinal microbiome in low density polyethylene degradation by caterpillar larvae of the greater wax moth, Galleria mellonella. Proc R Soc B. 2020; 287:20200112.
Hadad D, Geresh S, Sivan A. Biodegradation of polyethylene by the thermophilic bacterium Brevibacillus borstelensis. J Appl Microbiol. 2005;98(5):1093-1100.
Raoufi H, Taqwa S, Fagiryaar F. Enzymatic degradation of polyethylene and polyethylene terephthalate: Amini review. Am J Environ Clim. 2023; 2:41-50.
Ojha N, Pradhan N, Singh S, Barla A, Shrivastava A, Rai V, et al. Evaluation of HDPE and LDPE degradation by fungus, implemented by statistical optimization. Sci Rep. 2017; 7:39515.
Bertocchini F. Polyethylene bio-degradation by caterpillars of the wax moth Galleria mellonella. Curr Biol.2012;22(21):812-814.
Jeon JM, Park SJ, Choi TR, Park JH, Yang YH, Yoon JJ. Biodegradation of polyethylene and polypropylene by Lysinibacillus species JJY0216 isolated from soil grove. Polym Degrad Stab. 2021;1-8.

Published:
License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.