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Abstract

Building integrated photovoltaic thermal (BIPVT) systems represent a promising technology for achieving net-
zero energy buildings by simultaneously generating electricity and thermal energy. However, optimizing thermal
absorber configurations remains challenging due to complex interactions between environmental variables,
system parameters, and performance objectives. This paper presents a novel fuzzy logic-enhanced machine
learning framework for adaptive thermal absorber configuration optimization in BIPVT systems. The proposed
framework integrates fuzzy inference systems with advanced machine learning algorithms to dynamically
optimize absorber tube geometries, material properties, and operational parameters. The methodology
incorporates real-time environmental data, system performance metrics, and user preferences to provide intelligent
decision-making capabilities. Experimental validation demonstrates that the proposed framework achieves 15.3%
improvement in thermal efficiency and 12.7% enhancement in overall system performance compared to
conventional optimization approaches. The fuzzy logic component enables interpretable decision-making while
maintaining robustness under uncertain operating conditions. Results indicate that spiral absorber configurations
optimized through the proposed framework achieve the highest performance with 36.4% overall efficiency at
1000 W/mz solar irradiance.

Keywords: Fuzzy Logic, Building Integrated Photovoltaic Thermal, Machine Learning, Thermal Absorber
Optimization, Adaptive Systems, Net Zero Energy Buildings

1. Introduction

Building integrated photovoltaic thermal (BIPVT) systems offer a promising solution by combining
photovoltaic and thermal functionalities, thereby maximizing space utilization, aesthetics, and energy harvesting
efficiency. A key determinant of BIPVT system performance is the thermal absorber design, which governs heat
transfer and energy conversion efficiency. Recent advancements in Artificial Intelligence (Al) and Machine
Learning (ML) provide opportunities for dynamic system optimization. ML techniques such as support vector
regression (SVR) and artificial neural networks (ANN) have been effectively applied for predicting the electrical
efficiency of photovoltaic-thermal collectors under variable environmental influences [1].

However, conventional black-box ML models lack interpretability and struggle with uncertainty. This has led
to increased adoption of fuzzy logic systems, which handle imprecise variables through rule-based inference.
Notably, fuzzy logic has been integrated with autoregressive moving average with exogenous inputs
(ARMAX)modeling to improve thermal absorber geometry optimization in BIPVT systems [2]. At the same time,
hybrid Al approaches combining fuzzy logic, ML, and optimization algorithms have been successful in thermal
energy storage management under uncertain conditions [3, 4]. Innovations in materials and heat exchange
mechanisms continue to drive BIPVT system performance [5]. Applications of Al in smart window systems and
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adaptive controls underscore the need for flexible, robust frameworks [6]. Advanced models such as adaptive
neuro-fuzzy inference system (ANFIS) coupled with swarm intelligence have further enhanced real-time design
adaptability in nanofluid-based pressure — volume — temperature (PVT) systems [7]. Moreover, ML techniques
have yielded highly accurate performance predictions and energy conversion enhancements in BIPVT
configurations [8].

Optimizing BIPVT systems is essential for improving performance and economic viability in sustainable
architecture [9]. The geometry of thermal absorbers greatly affects system efficiency through its impact on heat
transfer and pressure drop. Spiral flow absorbers have shown superior thermal performance due to increased
turbulence and heat exchange area [10]. Optimization efforts also focus on airflow and heat conversion through
series connections and air/earth tube hybrids [11,12]. Hybrid configurations using flat plate, serpentine, and
compound parabolic concentrators have been evaluated for specific temperature conditions [13]. Advanced
absorber design considers not just thermal aspects but also long-term performance factors such as glazing and
coatings [14,15]. At the system level, integration with air purification, thermal storage, and fagades is enhancing
smart building performance [16]. Deep learning and hybrid methods have enhanced solar radiation forecasting
accuracy [17]. Short-term power output prediction using decision trees and other algorithms has shown effective
results [18]. Neuro-fuzzy models are beneficial in managing partial shading and mismatch conditions for
improving maximum power point tracking (MPPT) efficiency [19]. ML is also aiding predictive maintenance,
with models detecting faults early and reducing system downtime [20,21].

Fuzzy logic addresses uncertainty and imprecision in energy systems, especially under variable solar
irradiance. Mamdani-type inference systems support present value (PV) classification and anomaly detection
through interpretable outputs [22]. Patel et al. demonstrated improved solar radiation estimation using fuzzy logic
within ANN models [23]. In fault diagnosis, fuzzy logic enhances resilience and early detection in PV systems
[24]. Khadka et al. further demonstrated enhanced performance using fuzzy-controlled tilt panels in BIPV at low
latitudes [25]. Farajollahi et al. used a neural network and genetic algorithm hybrid to optimize a geothermal-
solar plant with high prediction accuracy [26]. Particle Swarm Optimization (PSO) has been combined with fuzzy
systems to accelerate convergence and improve prediction stability [27]. In islanded hybrid microgrids, fuzzy and
heuristic optimizations have enabled efficient energy dispatch under uncertain conditions [28]. This research
introduces a fuzzy logic-enhanced ML framework for adaptive optimization of thermal absorber configurations
in BIPVT systems. By integrating fuzzy inference with ML algorithms, the framework offers robust, real-time
optimization capable of handling diverse environmental and operational conditions.

2. Materials and methods
2.1 System Architecture

The proposed fuzzy logic-enhanced machine learning framework consists of four main components: data
acquisition and preprocessing, fuzzy inference system, machine learning optimization engine, and adaptive
control module. Figure 1 illustrates the proposed fuzzy logic-enhanced machine learning framework,
demonstrating seamless integration of environmental data processing, fuzzy inference systems, machine learning
models, optimization algorithms, and adaptive control for BIPVT optimization. Figure 2 presents the step-by-step
methodology flowchart illustrating the proposed fuzzy logic-enhanced machine learning framework workflow,
demonstrating seamless integration from environmental data collection through adaptive control implementation
for BIPVT optimization.

2.2 Fuzzy Inference System Design

The fuzzy inference system forms the core of the optimization framework, handling uncertainty and providing
interpretable decision-making capabilities. The system employs Mamdani-type fuzzy inference with triangular
and trapezoidal membership functions.

The fuzzy system considers five primary input variables: Solar Irradiance (1), Ranging from 200 to 1200 W/mg;
Ambient Temperature (T,,,p): Ranging from -10°C to 50°C; Mass Flow Rate (mm): Ranging from 0.001 to 0.01
ka/s; Wind Speed (v,,inq): Ranging from 0 to 15 m/s; System Load Demand. (L;emana): Ranging from 0 to
100%. Linguistic terms with corresponding membership functions characterize each input variable. For example,
solar irradiance is described using five linguistic terms: Very Low, Low, Medium, High, and Very High.
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Figure 1 System architecture of fuzzy logic-enhanced machine learning framework for BIPVT optimization.
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The system generates three primary outputs: Optimal Absorber Configuration (Config): Spiral, Horizontal
Serpentine, or Vertical Serpentine; Recommended Mass Flow Rate (rh,,.): Optimized flow rate in kg/s;

Performance Index (PI):
For solar irradiance, the membership functions are defined as:

1 if1<300
991 §£300 < I < 500 1)
0  ifl>500

Hrow (I) =

0 if 1 <400

7490 3£ 400 < I < 600

treaium (D) = 3 5200 @
Medtum 2L if 600 < 1 < 800

0 if I = 800

Similar membership functions are defined for other input and output variables.
2.2.1 Fuzzy Rule Base

The fuzzy rule base consists of 243 rules (3°) covering all possible combinations of input linguistic terms.
Example rules include:

Rule 1: IF Solar_Irradiance is High AND Ambient_Temperature is Medium AND Mass_Flow_Rate is Low
AND Wind_Speed is Low AND Load_Demand is High THEN Configuration is Spiral AND Flow_Rate_Opt
is Medium AND Performance_Index is High

Rule 2: IF Solar_lIrradiance is Low AND Ambient_Temperature is Low AND Mass_Flow_Rate is High
AND Wind_Speed is High AND Load_Demand is Low THEN Configuration is Horizontal_Serpentine AND
Flow_Rate_Opt is Low AND Performance_Index is Medium

The complete rule base is systematically constructed based on expert knowledge and experimental data to
ensure comprehensive coverage of operating conditions.

2.2.2 Advanced Fuzzy Membership Functions

The proposed framework employs adaptive membership functions that evolve based on system learning.
For solar irradiance, the enhanced membership functions are defined as:

—c:)?
Gaussian Membership Function:  gqysian(X) = exp (— %) 3)
H H PO _ . xX—-a; di—x
Adaptive Trapezoidal Function: 14, (x) = max (0, min (bi—ai' 1’_di—Ci)) 4

Sigmoid Membership Function: p; g;gmoeiq (X) = m (5)

where ¢;, o;are adaptive parameters updated through the learning mechanism, and «;, B; are slope and
inflection parameters, respectively.

2.3 Machine Learning Integration

2.3.1 Neural Network Architecture

A multi-layer perceptron neural network is integrated with the fuzzy system to provide adaptive learning
capabilities. The network architecture consists of: 1. Input layer: 5 neurons (corresponding to fuzzy system
inputs); 2. Hidden layers: 2 layers with 20 and 15 neurons, respectively. 3. Output layer: 3 neurons (thermal
efficiency, electrical efficiency, overall performance). The neural network is trained using the backpropagation
algorithm with the following cost function:

J©0) = 53 (ho(x©) =y ©)’ + L3I, 6F ©)
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where m is the number of training examples, 0 represents network parameters, A is the regularization
parameter, and hg(X) is the network hypothesis.
2.3.2 Support Vector Regression

Support Vector Regression (SVR) is employed for performance prediction and optimization. The SVR
model is formulated as:

fx) =Y, (a; —a))K(x;,x) +b @)

where a; and a; * are Lagrange multipliers, K (x;, X) is the kernel function, and b is the bias term. A radial
basis function (RBF) kernel is used:

K(xi,x;) = exp(—yllx; — x;|?) (8)
2.4 Optimization Algorithm
2.4.1 Particle Swarm Optimization

Particle swarm optimization (PSO) is integrated to fine-tune system parameters and optimize absorber
configurations. The PSO algorithm updates particle positions and velocities according to:

vigt=w vig e (Pia = xia) + ¢ 012 (90 — xia) ©
x5;1 _ xit,d + Uit,?z'l (10)

where w is the inertia weight, c1 and cz are acceleration coefficients, r and r2 are random numbers, p; 4 IS
the personal best position, and g is the global best position.

2.4.2 Multi-Objective Optimization

The optimization problem is formulated as a multi-objective optimization considering thermal efficiency,
electrical efficiency, and cost-effectiveness:

mcp(Tout_Tin)

maxfi (x) = Nenermar (x) = T, (11)

maxfy (x) = Netectricat ) = Nrep[1 = Bres (Te — Trer)] (12)

minf;(x) = Cost(x) = Cpaterial + Cmanufacturing + Cmaintenance (13)
subject to constraints:

0.001 < m < 0.01 kg/s (14)

20°C < Ty, < 40°C (15)

Toue = Tin + 5°C (16)

2.5 Adaptive Control Strategy

The adaptive control module continuously monitors system performance and adjusts optimization
parameters based on real-time feedback. The adaptation mechanism employs a recursive least squares

algorithm:
i A (k-1 k) A
600 = 6k = V) + orsrie g0 () — @7 (00 (k = 1)] (17)

_ 4y _ Pk=1)¢ (k)T (k)P (k~1)
P = Pk —=1) 1+¢T(k)P(k—-1) (k) (18)

where @ (k)represents parameter estimates, P(k) is the covariance matrix, and @(k) is the regression vector.
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2.6 Hybrid Optimization Framework
2.6.1 Multi-Objective Formulation
The optimization problem is formulated as a constrained multi-objective optimization:
min F (x) = [fy(x), f(x), f3(x), fo(0)]” (19)
where:
f1(%) = Ninermar (Maximize thermal efficiency)
f2(x) = MNetectricar (Maximize electrical efficiency)
f3(x) = Ciorey (Minimize total cost)
fa(x) = AP (minimize pressure drop)
2.6.2 Constraint Handling
The Pareto optimal solution set is determined using:
P*=x€Q|Ax' € F(x') X F(x) and F(x") # F(x) (20)

Subject to operational constraints:

91(x):200 < I < 1200 W/m? (21)

92(x):0.001 < 11 < 0.01 kg/s (22)
3(x): =10 < Tamb < 50 °C 23

g

9a(%):0 < vyipq < 15m/s (24)

3. Results
3.1 BIPVT Test System

The experimental validation was conducted using a BIPVT test system installed at the Energy Institute,
Bengaluru.

Table 1 presents comprehensive technical specifications of the experimental BIPVT test system, including
monocrystalline silicon PV modules (400 Wp), copper absorber with selective coating, polyurethane insulation
(50 mm), and measurement uncertainties for critical parameters used in performance validation studies.

Table 1 Enhanced BIPVT test system specifications.

Parameter Specification Uncertainty
PV Module Type Monocrystalline Silicon +0.5%
Panel Area 2.0 m? +0.1%
Peak Power 400 Wp +3%
Absorber Material Copper with selective coating +0.2%
Tube Diameter 12 mm (inner), 15 mm (outer) +0.1 mm
Insulation Polyurethane foam, 50 mm +2 mm
Flow Rate Range 0.001-0.01 kg/s +0.0001 kg/s
Tilt Angle 13° (optimized for location) +0.5°
Working Fluid Water-ethylene glycol (60:40) +1%

3.2 Instrumentation and Data Acquisition

The test system is equipped with comprehensive instrumentation for monitoring environmental conditions
and system performance.

Table 2 details the precision instrumentation employed for experimental validation, featuring Kipp &
Zonen CMP22 pyranometer (+0.5% accuracy), Pt100 Class A resistance temperature detector (RTD) sensors
(£0.1°C), Bronkhorst flow meters (£0.2%), and Campbell CR3000 data acquisition systems with specified
sampling rates.
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Table 2 Advanced instrumentation and measurement systems.

Instrument Model Range Accuracy Sampling Rate (Hz)
Pyranometer Kipp & Zonen CMP22 0-2000 W/m? +0.5% 1

RTD Sensors Pt100 Class A -50 to 150°C +0.1°C 1

Flow Meter Bronkhorst EL-FLOW 0-20 L/min +0.2% 10

Data Logger Campbell CR3000 - 16-bit 10
Anemometer Vaisala WXT536 0-60 m/s 0.3 m/s 1

Digital Multimeter Keysight 34970A 0-1000V +0.05% 0.1

3.3 Experimental Procedure

The experimental validation was conducted over a six-month period covering different seasonal conditions.
Three absorber configurations were tested: Spiral Configuration: Helical tube arrangement with 5 turns.
Horizontal Serpentine: Parallel horizontal tubes with return bends. Vertical Serpentine: Vertical parallel tubes
with return bends. For each configuration, the fuzzy logic-enhanced framework was compared against
conventional optimization methods including: Fixed parameter operation; PID controller-based optimization;
Simple neural network. Optimization.

3.4 Performance Metrics

System performance was evaluated using the following metrics:

mcp(Tout_Tin)

Thermal Efficiency: ny, = X 100% (25)

I-A;
Electrical Efficiency: n,; = I_i—‘:V X 100% (26)
Overall Efficiency: noveranr = Nen + Net 27)
Performance Improvement Index: PII = Tproposed”Mbaseline o 1 ()()oy, (28)

Nbaseline

3.5 Computational Requirements

The fuzzy logic-enhanced machine learning framework requires computational resources for real-time
BIPVT optimization. Analysis of algorithm complexity shows that hybrid ML component takes O (n log n)
time and fuzzy inference takes O(m?2), where n represents input variables and m denotes fuzzy rules.

A single BIPVT unit takes 0.23 seconds, a modest residential building (5 units) takes 1.1 seconds, and
commercial applications (50 units) take 8.7 seconds on ordinary hardware. Memory needs scale linearly at a
45MB base allotment plus 12MB per unit. A minimum 4-core processor (2.5GHz), 8GB RAM, and 500MB
storage are needed for best performance. For 15.9% performance improvement over standard PID controllers
(0.05 seconds, 2MB), the suggested framework trades computational expense. Parallel processing architecture
enables real-time sub-10-second reaction under dynamic conditions.Scalability research shows linear
computational growth up to 100 BIPVT units before distributed processing. The cloud allows unlimited
scalability and 0.8-second latency for remote optimization. The framework's energy-efficient design uses less
than 2% of system-generated power, delivering a positive energy balance in all operational scenarios.

3.6 Reliability and Fault Tolerance

The proposed framework incorporates comprehensive fault tolerance mechanisms, ensuring 99.2% system
reliability. Redundant sensor arrays provide backup measurements during individual sensor failures. Adaptive
algorithm switching automatically transitions between fuzzy logic and direct control modes upon ML
component failure. Self-diagnostic protocols continuously monitor system health parameters. Table 3 shows
the fault tolerance mechanism.



Table 3 Fault tolerance mechanisms.
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Fault Type Detection Method Recovery Strategy Response Time (s) Success Rate (%)
Sensor Failure Signal validation Backup sensors 0.5 98.7
ML Model Error Prediction bounds Fuzzy fallback 1.2 97.3
Communication Loss Heartbeat monitoring Local control 2.1 99.1
Power Fluctuation Voltage monitoring Battery backup 0.3 99.8

3.7 Statistical Significance Testing

Statistical validation confirms the proposed framework's superior performance through comprehensive
hypothesis testing. Independent t-tests demonstrate significant differences between methods (p < 0.001),
while one-way ANOVA validates overall performance variations across all approaches (F (3,96) = 47.83, p <
0.001). The statistical significance analysis is shown in Table 4. Post-hoc Tukey tests confirm pairwise
significance between the proposed framework and conventional methods.

Table 4 Statistical significance analysis.

Comparison Test Type t-statistic p-value Effect Size (Cohen's d) Significance
Proposed vs Fixed t-test 12.47 <0.001 234 Highly Significant
Proposed vs PID t-test 8.92 <0.001 1.67 Highly Significant
Proposed vs Neural t-test 5.23 <0.001 0.98 Significant
Overall ANOVA F-test 47.83 <0.001 n?=0.58 Highly Significant

4. Discussions
4.1 Fuzzy System Performance

The fuzzy inference system demonstrated excellent performance in handling uncertain and imprecise
information. Figure 3 shows 3D surface plots demonstrating the fuzzy system's response to different input
combinations. The fuzzy system successfully captured the non-linear relationships between input variables and
optimal configurations. The rule-based coverage analysis revealed that the defined rules adequately covered
98.7% of operating conditions.

(A) 0.6

0.5

0.4

0.3

Performance Index

Performance Index

0.2

0.1

Solar Irradiance (W/m2)

Figure 3 Fuzzy Surface Plots for (A) Solar Irradiance vs. Ambient Temperature, (B) Mass Flow Rate vs. Wind
Speed.
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Figure 3 (cont.) Fuzzy Surface Plots for (A) Solar Irradiance vs. Ambient Temperature, (B) Mass Flow Rate
vs. Wind Speed.

4.2 Machine Learning Model Performance

The integrated machine learning models achieved high prediction accuracy across different performance
metrics. Table 5 compares predictive accuracy metrics across six machine learning algorithms, demonstrating
that the proposed fuzzy-ML framework achieves superior performance with 1.92% root mean square error
(RMSE), 0.978 R?, and 95.3% convergence rate, outperforming ANFIS, deep neural networks, and other
conventional approaches. The proposed hybrid approach combining fuzzy logic with machine learning
achieved the best performance with an RMSE of 1.92% and an R2 of 0.978, as shown in Table 5. These results
align with previous studies on machine learning applications in BIPVT design optimization [29].

Table 5 Machine learning model performance.

Algorithm RMSE (%) MAE (%) R2 Training Time (s)
Neural Network 2.34 1.87 0.967 45.2
Support Vector Regression 3.12 241 0.943 23.8
Random Forest 2.89 2.15 0.951 18.7
Proposed Hybrid 1.92 1.43 0.978 52.1

4.3 Absorber Configuration Optimization

The framework successfully optimized absorber configurations for different operating conditions. Figure
4 demonstrates the comprehensive performance analysis of three absorber configurations across varying solar
irradiance levels (600-1200 W/m2). The spiral absorber consistently outperforms vertical serpentine and
horizontal parallel designs, achieving peak thermal efficiency of 36.4% at 1000 W/m? irradiance. Performance
enhancement analysis reveals spiral configurations provide 15.9% improvement over conventional
approaches, validating the fuzzy logic framework’s optimization capabilities in identifying optimal absorber
geometries for maximizing BIPVT system efficiency under dynamic environmental conditions.

4.4 Real-Time Optimization Performance

The adaptive Nature of the proposed framework was evaluated through real-time optimization tests. Figure
5 shows the system response to varying environmental conditions over a typical day. Figure 4 shows time-
series plots of solar irradiance, ambient temperature, optimized mass flow rate, and resulting thermal
efficiency. The framework demonstrated excellent tracking capability, adjusting system parameters in response
to changing conditions with an average response time of 2.3 seconds.
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4.5 Uncertainty Analysis

The fuzzy logic component's ability to handle uncertainty was evaluated through Monte Carlo simulations.
Figure 6 illustrates the comprehensive uncertainty propagation analysis of the fuzzy logic-enhanced BIPVT
optimization framework. Subplot (A) demonstrates solar irradiance uncertainty propagation with +10.0% input
variance yielding +3.2% output variance, while subplot (B) shows temperature measurement uncertainty with
similar robust performance characteristics. The combined effects analysis (C) reveals a strong correlation between
inputs and system performance. In contrast, the uncertainty bounds analysis (D) validates the framework's resilient
operation under varying environmental conditions, confirming theoretical predictions.

4.6 Comparative Analysis

Table 6 presents a comprehensive performance comparison between the proposed framework and existing
optimization approaches, showing 15.9% improvement in overall efficiency compared to fixed parameter
operation and 3.7% enhancement over neural network-based optimization methods.

Table 6 Comparative performance analysis.

Method Thermal I?I(.ectrical _Oyerall Improvement
Efficiency (%) Efficiency (%) Efficiency (%) (%)
Fixed Parameters 28.7 12.1 40.8 Baseline
PID Controller 31.2 12.3 43.5 6.6
Neural Network 32.8 12.8 45.6 11.8
Proposed Framework 34.1 13.2 47.3 15.9

4.7 Seasonal Performance Analysis

Long-term performance evaluation was conducted across different seasons to assess the framework's
adaptability. Table 7 summarizes long-term performance evaluation across different seasons, demonstrating the
framework's consistent adaptability with thermal efficiencies ranging from 32.1% (winter) to 34.8% (summer),
maintaining robust performance under varying environmental conditions throughout the year.

Table 7 Seasonal performance analysis.

Season Average Irradiance Thermal Efficiency Electrical Efficiency Overall Efficiency
(W/m2) (%) (%) (%)
Summer 847 35.2 12.8 48.0
Monsoon 423 31.7 13.4 451
Winter 612 33.1 131 46.2
Spring 734 34.6 13.0 47.6

4.8 Economic Analysis

The economic benefits of the proposed optimization framework were evaluated considering energy savings
and system costs. Table 8 provides a detailed economic assessment of the optimization framework, indicating
favorable financial returns with a 19.2-year payback period, positive net present value, and quantified energy
savings justifying implementation costs through demonstrated performance improvements. The economic
analysis indicates favorable returns with a payback period of 19.2 years and positive net present value.



Online First 14

Table 8 Economic analysis results.

Parameter Value Unit
Additional System Cost 2,847 usb
Annual Energy Savings 1,234 kWh
Energy Cost Savings 148 USD/year
Payback Period 19.2 years
Net Present Value (20 years) 1,456 usb
Internal Rate of Return 7.3 %

4.9 Machine Learning Model Comparison.

Table 9 presents a comparative analysis of machine learning algorithms, including training time, convergence
rates, and accuracy metrics, validating the superiority of the proposed fuzzy-ML approach with an optimal balance
between computational efficiency and prediction accuracy. The multi-objective optimization Pareto front analysis
for BIPVT systems shows thermal, electrical, and cost trade-offs in Figure 7. The efficiency trade-off plot (A)
shows optimal configurations with 36.4% thermal efficiency, while the 3D Pareto front (B) shows performance
correlations. The performance-cost analysis (C) supports the paper's 15.9% improvement claims by proving the
fuzzy logic framework can find optimal solutions that balance system efficiency and economic feasibility.

Table 9 Comprehensive ML algorithm performance Analysis.

Algorithm RMSE (%) MAE (%) R2 Training Time (s) Convergence Rate (%)
Proposed Fuzzy-ML 1.92 1.45 0.978 34.2 95.3
ANFIS 2.34 1.78 0.965 45.7 89.1
Deep Neural Network 211 1.56 0.972 78.9 92.4
Support Vector Regression 2.87 2.23 0.951 231 87.6
Random Forest 3.12 241 0.943 12.8 91.2
Gradient Boosting 2.76 2.08 0.958 28.4 88.7
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Figure 7 Multi-objective optimization pareto front analysis.

Figure 8 shows an adaptive learning convergence study for BIPVT optimization methods, showing the fuzzy-
ML framework's higher performance. RMSE convergence plot (A) shows the proposed technique achieves the
lowest error rate (1.92%) and fastest convergence, while Rz analysis (B) verifies optimal prediction accuracy
(0.978). The fuzzy-enhanced framework outperforms ANFIS, deep neural networks, and support vector regression
with 95.3% convergence rate for real-time BIPVT system optimization in dynamic environments.
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Figure 8 Adaptive learning convergence analysis. (A) RMSE and (B) Rz

4.10 Comprehensive Sensitivity Analysis

A comprehensive sensitivity analysis was conducted to evaluate the framework’s robustness to parameter
variations. The sensitivity index (SI) for each parameter is calculated as:

SI, = IMoverall X pPi (29)

i
op; Noverall

Table 10 Parameter sensitivity analysis results.

Parameter Nominal Value Variation Range (%) Sensitivity Index Impact Level
Solar Irradiance 800 W/m? +20 0.847 High
Ambient Temperature 25°C +15 -0.523 Medium
Mass Flow Rate 0.005 kg/s +30 0.234 Low
Wind Speed 3mls +50 0.156 Low
Absorber Emissivity 0.85 +10 -0.423 Medium

Table 10 quantifies sensitivity indices for critical system parameters, revealing solar irradiance as the most
influential factor (SI = 0.847), followed by ambient temperature (-0.523) and absorber emissivity (-0.423),
providing insights for robust system design.
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Modified Nusselt Number Correlation: Nu = 0.023 x Re®8 x Pr04* x (1 + %) X fopiral (30)
H H Dcoit -0.2

where fopirq: 1S the spiral enhancement factor:  fopia1 = 1.15 + 0.35 X (—b) (31)

tube
Thermal Efficiency with Environmental Corrections: Nepermal = A(iislﬂ X Nonvironmental (32)
total
Nenvironmental = 1- O-OZ(Tamb - Tref) - O-OOS(Vwind - vref) (33)

5. Conclusions

This research successfully demonstrates the effectiveness of a fuzzy logic-enhanced machine learning
framework for optimizing Building Integrated Photovoltaic Thermal (BIPVT) systems. The proposed hybrid
approach achieved significant performance improvements, delivering 15.3% enhancement in thermal
efficiency and 12.7% improvement in overall system performance compared to conventional optimization
methods. The fuzzy-ML framework demonstrated superior predictive accuracy with 1.92% RMSE and 0.978 R?,
outperforming traditional approaches including neural networks, support vector regression, and ANFIS. Statistical
significance testing confirmed highly significant improvements across all performance metrics. Spiral absorber
configurations emerged as the optimal solution, achieving 36.4% overall efficiency at 1000 W/m2 solar irradiance.
The system's real-time optimization capabilities, with 2.3-second response times, enable adaptive performance
under dynamic environmental conditions. Economic analysis reveals favorable returns with a 19.2-year payback
period, supporting the technology's commercial viability. This work establishes a foundation for intelligent,
adaptive BIPVT systems contributing to net-zero energy building objectives.
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