
Aqsa Aufa Syauqi Sadana
Department of Medicine, Faculty of Medicine, Universitas Diponegoro, Semarang 50275, Indonesia
Sineba Nafti Rizkite Barly
Department of Medicine, Faculty of Medicine, Universitas Diponegoro, Semarang 50275, Indonesia
Lugas Firdinand Hamdi
Department of Medicine, Faculty of Medicine, Universitas Diponegoro, Semarang 50275, Indonesia
Nurul Azizah Dian Rahmawati
Department of Medicine, Faculty of Medicine, Universitas Diponegoro, Semarang 50275, Indonesia
Araminta Vania Saraswati
Department of Medicine, Faculty of Medicine, Universitas Diponegoro, Semarang 50275, Indonesia
A’liyatur Rosyidah
Research Center for Vaccine and Drugs, National Research and Innovation Agency (BRIN), Bogor 16911, Indonesia
https://orcid.org/0000-0001-8427-4364
Muflihatul Muniroh
Department of Physiology, Faculty of Medicine, Universitas Diponegoro, Semarang 50275, Indonesia
https://orcid.org/0000-0003-0020-6722
DOI: https://doi.org/10.14456/apst.2025.71
Keywords: acne vulgaris Apus bamboo shoots chitosan microparticles spray gel
Abstract
Acne vulgaris is characterized by the production of comedones, papules, pustules, nodules, and cysts due to pilosebaceous unit expansion and inflammation. The presence of bacteria and accompanying inflammation increase this process even more. This study aimed to assess the anti-acne effects of chitosan microparticles (CMPs) loaded with the methanol extract of Apus bamboo (Gigantochloa apus) shoots (CMPs/Ab). The morphology of the CMPs/Ab appears to be spherical, with a particle size of 838.9 ± 33.4 nm and a zeta potential of +29.06 ± 1.22 mV, suggesting that the particles are micro-sized and stable. Moreover, the formulation of CMPs/Ab has an encapsulation effectiveness of 46.4 ± 0.91%. The antibacterial property of CMPs/Ab inhibits the growth of pathogenic bacteria caused by acne vulgaris, with an average inhibition zone of 41.67 ± 1.53 mm, 42.67 ± 2.52 mm, and 22.33 ± 1.53 mm for Staphylococcus aureus, S. epidermidis, and Cutibacterium acne, respectively. The CMPs/Abs formulated into anti-acne spray gel showed stable physical features for 28 days. It is a safe and potent anti-acne candidate that can disrupt the membranes of acne-causing bacteria, S. epidermidis, due to their natural composition, reducing the risk of adverse reactions and antibiotic resistance.
How to Cite
Sadana, A. A. S., Barly, S. N. R., Hamdi, L. F., Rahmawati, N. A. D., Saraswati, A. V., Rosyidah, A., & Muniroh, M. (2025). Bioactivity of chitosan microparticles loaded with Apus bamboo (Gigantochloa apus) shoot extract: Emphasis on characterization and in vitro antibacterial properties for acne treatment. Asia-Pacific Journal of Science and Technology, 30(05), APST–30. https://doi.org/10.14456/apst.2025.71
References
Amita H, Sutaria S, Haitham M, Saleh J, Schlessinger J. Acne Vulgaris In: Stat pearls treasure Island (FL). 2024; 7:255-267.
Sari L, Jusuf NK, Putra IB, Bacterial identification of acne vulgaris. Bali Med J. 2020; 9: 753–756.
Dao M, Kelsberg G, Louden D, Potential harms of long-term acne treatment with oral antibiotics. Can Fam Physician. 2020; 66: 669–670.
Setiawan A, Keanekaragaman Hayati Indonesia: Masalah dan upaya konservasinya. Indones J Conserv. 2022; 11:13–21.
Soesanto E, Uji aktivitas antioksidan ekstrak rebung bambu Apus (Gigantochloa apus Kurz) terhadap 1,1-diphenyl-2- picrylhidrazyl (DPPH). Cendekia J Pharm. 2018; 2:88–94.
Soesanto E, Pranata S, Rejeki S, Irham LM, The role of bamboo shoot Gigantochloa apus extract in decreasing the il-17/il-10 ratio level in the atherosclerosis process. Open Access Macedonian J Med Sci (OAMJMS). 2021; 9:817–821.
Indriatie R, Mudaliana S. Microbial resistance of building plants of Gigantochloa apus. IOP Conf Ser Mater Sci Eng. 2019; 54-56.
Manurung M, Sibarani Suaniti M JN, P Sari DP, Characterization, Potencial of bamboo Apus charcoal activated with ZnCl2 as an antibacterials Escherichia coli and staphylococcus aureus. World J Pharm Life Sci. 2022; 8:112–117.
Sabbineni J, Phenol-An effective antibacterial Agent. J Med Org Chem. 2016; 3:182–191.
Manne AA, K. VV, G AK, et al. Pterocarpus marsupium Roxb. heartwood extract synthesized chitosan nanoparticles and its biomedical applications. J Genet Eng Biotechnol. 2020; 18-19.
Al-Fawares O, Alshweiat A, Al-Khresieh RO, A significant antibiofilm and antimicrobial activity of chitosan-polyacrylic acid nanoparticles against pathogenic bacteria. Saudi Pharm J SPJ. 2024; 32:101-918.
Farmoudeh A, Shokoohi A, Ebrahimnejad P, Preparation and evaluation of the antibacterial effect of chitosan nanoparticles containing ginger extract tailored by central composite design. Adv Pharm Bull. 2021; 11:643–650.
Amaliyah N, Ngadiwiyana, Sarjono PR, Ismiyarto antibacterial activity of cinnamic acid – chitosan encapsulation. J Kim Sains dan. 2018; 21:8–12.
Choursiya, Surbhi; Andheriya D, A review on topical gels as drug delivery system. J Drug Deliv Ther. 2018; 8:124–128.
Van Bavel N, Issler T, Pang L, A simple method for synthesis of chitosan nanoparticles with ionic gelation and homogenization. Molecules. 2023; 28:432-438.
Salar RK, Kumar N, Synthesis and characterization of vincristine loaded folic acid–chitosan conjugated nanoparticles. Res Technol. 2016; 2:199–214.
Dewi FRP, Lim V, Rosyidah A, Characterization of silver nanoparticles (AgNPs) synthesized from Piper ornatum leaf extract and its activity against food-borne pathogen Staphylococcus aureus. Biodiversitas. 2023; 24:1742–1748.
Angelia A, Putri GR, Shabrina A, Ekawati N, Formulasi sediaan spray gel ekstrak kulit jeruk manis (Citrus Sinensis L.) sebagai Anti-Aging. Generics J Res Pharm. 2022; 2: 44–53.
Radiastuti N, Ramadhan F, Inayati Siregar YD, Antioxidants in endophytic fungi phomopsis spp. extracts from cinchona plant (Cinchona calisaya). J Biotek Medisiana Indones. 2022; 10:109–115.
Lotfy MM, Hassan HM, Hetta MH, Di-(2-ethylhexyl) Phthalate, a major bioactive metabolite with antimicrobial and cytotoxic activity isolated from River Nile derived fungus Aspergillus awamori. Beni-Suef Univ J Basic Appl Sci. 2018; 7: 263–269.
Hoda S, Gupta L, Shankar J, Gupta AK, Vijayaraghavan P. Cis-9-hexadecenal, a natural compound targeting cell wall organization, critical growth factor, and virulence of Aspergillus fumigatus. ACS Omega. 2020; 5(17):10077–10088.
Pandey AK, Ojha V, Precooking processing of bamboo shoots for removal of anti-nutrients. J Food Sci Technol. 2014; 51:43–50.
Ecevit K, Barros AA, Silva JM, Reis RL, Preventing microbial infections with natural phenolic compounds. Futur Pharmacol. 2020 2:460–498.
Rachman ES, Widji Soeratri, Tristiana Erawati M, Characteristics and physical stability of nanoemulsion as a vehicle for Anti-Aging cosmetics: A Systematic Review. J Farm Dan Ilmu Kefarmasian Indones.2023; 10:62–85.
Halim AS, Keong LC, Zainol I, Rashid AHA, Biocompatibility and biodegradation of chitosan and derivatives. Chitosan‐Based Syst Biopharm. 2012; 57–73.
Triwulandari E, Fahmiati S, Sampora Y, Effect of polyanions variation on the particle size of chitosan nanoparticle prepared by ionic gelation method. AIP Conf Proc 2024.
El-Naggar NE-A, Shiha AM, Mahrous H, Mohammed ABA, Green synthesis of chitosan nanoparticles, optimization, characterization and antibacterial efficacy against multi-drug-resistant biofilm-forming Acinetobacter baumannii. Sci Rep. 2022; 12:19869.
Soltanzadeh M, Peighambardoust SH, Ghanbarzadeh B, Mohammadi M, Lorenzo JM. Chitosan nanoparticles as a promising nanomaterial for encapsulation of pomegranate (Punica granatum L.) peel extract as a natural source of antioxidants. Nanomaterials (Basel). 2021;11(6):14-39.
Khan I, Saeed K, Khan I, Nanoparticles: Properties, applications and toxicities. Arab J Chem. 2019; 12:908–931.
Enkapsulasi Asam folat menggunakan nanopartikel kitosan dengan metode gelasi ionik. Universitas islam negri syarif hidayatullah Jakarta [Thesis]. 2019.
Alqahtani F, Aleanizy F, Tahir E El, Antibacterial activity of chitosan nanoparticles against pathogenic n. Gonorrhoea. Int J Nanomedicine. 2020; 15:7877–7887.
Egorov AR, Kirichuk AA, Rubanik V, Chitosan and Its Derivatives: Preparation and antibacterial properties. Materials (Basel). 2023; 16:1–29.
Shaaban MT, Ghaly MF, Fahmi SM, Antibacterial activities of hexadecanoic acid methyl ester and green-synthesized silver nanoparticles against multidrug-resistant bacteria. J Basic Microbiol. 2021; 61:557–568.
Zhang J, Cui X, Zhang M, The antibacterial mechanism of perilla rosmarinic acid. Biotechnol Appl Biochem. 2022; 69:1757–1764.
Retnowati D, Sari R, Hendradi E, Septiani S, The stability and irritability study of the chitosan- aloe vera spray gel as wound healing. J Basic Clin Physiol Pharmacol. 2021; 32:651–656.

Published:
License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.