
Muhamad N. Manaf
Department of Electrical Engineering, Faculty of Information Technology, Universitas Nahdlatul Ulama Yogyakarta, Special Region of Yogyakarta, Indonesia.
Feri F. Laksana
Department of Computer Engineering, Faculty of Information Technology, Universitas Nahdlatul Ulama Yogyakarta, Special Region of Yogyakarta, Indonesia.
Rino Prihantoro
Department of Electrical Engineering, Faculty of Information Technology, Universitas Nahdlatul Ulama Yogyakarta, Special Region of Yogyakarta, Indonesia.
Muhammad Ikhsanudin
Department of Electrical Engineering, Faculty of Information Technology, Universitas Nahdlatul Ulama Yogyakarta, Special Region of Yogyakarta, Indonesia.
Irwan Novianto
Department of Electrical Engineering, Faculty of Information Technology, Universitas Nahdlatul Ulama Yogyakarta, Special Region of Yogyakarta, Indonesia.
Abdulloh Badruzzaman
Department of Informatics, Faculty of Information Technology, Universitas Nahdlatul Ulama Yogyakarta, Special Region of Yogyakarta, Indonesia.
Mochamad Syamsiro
Department of Mechanical Engineering, Faculty of Engineering, Janabadra University, Special Region of Yogyakarta, Indonesia.
DOI: https://doi.org/10.14456/apst.2025.23
Keywords: Monolayer Silicon Stability Strain Synthesized
Abstract
We conducted calculations using First-Principles based on Density Functional Theory to determine the stability of monolayer silicene. A quasi-freestanding of monolayer silicene was applied as a model during calculations. We investigated the total energy and the atomic configuration using various lattice constant. We analyzed that a monolayer of silicene in a freestanding state will never be synthesized. Silicene merely can be synthesized only on the top of the substrate. We found some possible values of the lattice constants of monolayer silicene on the substrate, especially in recent experiment which was silicene on the top of Au[111]. We also investigated the electronic structure of silicene using various lattice constant. We assumed that the strain engineering can be truly applied in silicene, and in all group IV monolayer. This opportunity opening the possibility of silicene for application of topological quantum computing.
How to Cite
Manaf, M. N., Laksana, F. F., Prihantoro, R. ., Ikhsanudin, M. ., Novianto, I. ., Badruzzaman, A. ., & Syamsiro, M. . (2025). Possible values of lattice constant of silicene growth on substrate: Density functional calculation. Asia-Pacific Journal of Science and Technology, 30(02), APST–30. https://doi.org/10.14456/apst.2025.23
References
Takeda K. and Shiraishi K. Theoretical possibility of stage corrugation in Si and Ge analogs of graphite. Phys. Rev. B: Condens. Mater. Phys. 1994;50:14916–14922.
Geim A, Novoselov K. The rise of graphene. Nature Mater. 2007;6:183–191.
Guzman-Verri G, Lew Yan Voon L. Electronic structure of silicon-based nanostructures. Phys Rev B Condens Matter Mater Phys. 2007;76:075131.
Cahangirov S, Topsakal M, Aktürk E, Sahin H, Ciraci S. Two- and One-Dimensional Honeycomb Structures of Silicon and Germanium. Phys Rev Lett. 2009;102(23):236804.
Şahin H, Cahangirov S, Topsakal M, Bekaroglu E, Akturk E, Senger RT, et al. Monolayer honeycomb structures of group-IV elements and III-V binary compounds: First-principles calculations. Phys Rev B Condens Matter Mater Phys. 2009;80(15):155453.
Liu C.-C, Feng W, Yao Y. Quantum spin hall effect in silicene and two-dimensional germanium. Phys Rev Lett. 2011;107(7):076802.
Drummond ND, Zólyomi V, Fal’ko VI. Electrically tunable band gap in silicene. Phys Rev B Condens Matter Mater Phys. 2012;85(7):075423.
Leandri C, Lay GL, Aufray B, Girardeaux C, Avila J, Dávila ME, et al. Self-aligned silicon quantum wires on Ag(110). Surf Sci. 2005;574:L9–L15.
Aufray B, Kara A, Vizzini S, Oughaddou H, Léandri C, Ealet B, et al. Graphene-like silicon nanoribbons on Ag(110) A possible formation of silicene. Appl. Phys. Lett. 2010;96(18):183102.
Lalmi B, Oughaddou H, Enriquez H, Kara A, Vizzini S, Ealet B, et al. Epitaxial growth of a silicene sheet. Appl Phys Lett. 2010;97(22):23109.
Vogt P, De Padova P, Quaresima C, Avila J, Frantzeskakis E, Asensio MC, et al. Silicene Compelling Experimental Evidence for Graphenelike Two-Dimensional Silicon. Phys Rev Lett. 2012;108(15):155501.
Feng B, Ding Z, Meng S, Yao Y, He X, Cheng P, et al. Evidence of silicene in honeycomb structures of silicon on Ag(111). Nano Lett. 2012;12(7):3507–3511.
Chen L, Liu C-C, Feng B, He X, Cheng P, Ding Z, et al. Evidence for dirac fermions in a honeycomb lattice based on silicon. Phys Rev Lett. 2012;109:056804-1 – 056804-5.
Stpniak-Dybala A, Dyniec P, Kopciuszyski M, Zdyb R, Jałochowski M, Krawiec M. Planar silicene: A new silicon allotrope epitaxially grown by segregation. Adv Funct Mater. 2019;29(50):1906053.
Nazzari D, Genser J, Ritter V, Bethge O, Bertagnolli E, Ramer G, et al. Highly biaxially strained silicene on Au(111). J Phys Chem C. 2021;125(18):9973–9980.
Jaroch T, Krawiec M and Zdyb R. Layered heterostructure of planar and buckled phases of silicene. 2d Mater. 2021;8(3):035038.
Genser J, Nazzari D, Ritter V, Bethge O, Watanabe K, Taniguchi T, et al. Optical signatures of dirac electrodynamics for hBN-passivated silicene on Au(111). Nano Lett. 2021;21(12):5301-5307.
Jaroch T, Zdyb R, Temperature-dependent growth and evolution of silicene on Au ultrathin films—LEEM and LEED studies. Materials. 2022;15(4):1610.
Hohenberg P, Kohn W. Inhomogeneous electron gas. Phys Rev. 1964;136:B864-B871.
Kohn W, Sham LJ. Self-consistent equations including exchange and correlation effects. Phys Rev. 1965;140:A1133-A1138.
Payne MC, Teter MP, Allan DC, Arias TA, Joannopoulos JD. Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients. Rev Mod Phys 1992;64(4):1045-1096.
National Institute for Materials Science. NIMS/Nano-simulation Software [Internet]. 2024 [cited 2024 Sep 26]. Available from: https://azuma.nims.go.jp/.
Troullier N, Martins JL. Efficient pseudopotentials for plane-wave calculations. Phys Rev B Condens Matter Phys. 1991;43(3):1993-2006.
Perdew JP, Wang Y. Accurate and simple analytic representation of the electron-gas correlation energy. Phys Rev B Condens Matter Phys. 1992;45(23):13244-13249.
Monkhorst HJ, Pack JD. Special points for Brillouin-zone integrations. Phys Rev B Condens Matter Mater Phys. 1976;13(12):5188-5192.
Stewart DA. Cautionary tale of two basis sets and graphene. Comput Sci Eng. 2012;14(2):55-59
Du Y, Zhuang J, Wang J, Li Z, Liu H, Zhao J, et al. Quasi-freestanding Epitaxial Silicene on Ag(111) by Oxygen Intercalation. Sci Adv. 2016;2(7):e1600067.
Tao L, Cinquanta E, Chiappe D, Grazianetti C, Fanciulli M, Dubey M, et al. Silicene field-effect transistors operating at room temperature. Nat Nanotechnol. 2015;10(3):227-231.
Chiappe D, Scalise E, Cinquanta E, Grazianetti C, van den Broek B, Fanciulli M, et al. Two-dimensioanl Si nanosheets with local hexagonal structure on a MoS2 surface. Adv Mater. 2014;26(13):2096–2101.
Wiberg N, Schuster H, Simon A, Peters K. Hexa-tert-butyldisilane – the molecule with the longest Si–Si bond. Angew. Chem Int Ed Engl. 1986;25:79-80.
Ichinohe M, Toyoshima M, Kinjo R, Sekiguchi A. Tetrasilatetrahedranide: a silicon cage anion. J Am Chem Soc. 2003;125:13328-13329.

Published:
License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.